viernes, 12 de noviembre de 2010

Clasificación y fundamento

http://sistema-diedrico.blogspot.com.es/2010/11/curvas-y-superficies.html

Poliédricas

http://superficies-poliedricas.blogspot.com/

Helicoides y helizoides

Helicoide tórico fluorescente



Hélices
























Regladas alabeadas


Las superficies alabeadas.


Una superficie alabeada contiene sus puntos no coplanares. La superficie alabeada está generada por rectas que se apoyan en tres líneas directrices. Las tres líneas directrices pueden ser rectas o curvas y la directriz ser propia o impropia.

Si además de ser alabeadas se pueden construir con líneas rectas, obtenemos las regladas alabeadas.

El paraboloide
El paraboloide está generado por una recta que se apoya en dos líneas directrices y siempre se mantiene paralela a un plano llamado director. Existe otro conjunto de generatrices consideradas como directrices y un plano paralelo a estas directrices definido como nuevo plano director.
Dos generatrices infinitamente próximas se cruzan mientras que las de distinto sistema se cortan.
La superficie es de segundo orden ya que si es cortada por una recta la corta como máximo en dos puntos.
El plano tangente en un punto a la misma está definido por dos generatrices, una de cada sistema, y ambas pasan por el plano.
Como cada sistema contiene una generatriz en el infinito -la línea del infinito del plano director- todo plano secante tiene dos puntos en el infinito comunes con la superficie. Las secciones planas de la superficie son de forma general hipérbolas y en casos particulares parábolas.
Los planos paralelos a la recta común de los planos directores producen secciones parabólicas mientras que todas las demás secciones son hiperbólicas.

El conoide
El conoide es una superficie reglada alabeada con un plano director y dos directrices, una rectilínea y otra curva. Si la directriz curva es un círculo se tiene el conoide circular, si es una elipse tenemos el conoide elíptico, etcétera.
Si la recta directriz es paralela al plano de la directriz curva y perpendicular al plano director la superficie engendrada se denomina conoide recto, en caso de que no lo sea se denomina oblicuo.

El hiperboloide
Si consideramos dos rectas que se cruzan y una de ellas es el eje de revolución al girar las se engendra un hiperboloide de una hoja.
La rectas de esta superficie infinitamente próximas se cruzan y la simétrica de cualquiera respecto a un plano meridiano de la superficie de revolución es una generatriz del otro sistema de rectas.
El hiperboloide es una superficie cuyas secciones son siempre cónicas, cuando la superficie gira cualquier generatriz aparece dos veces paralela a un plano meridiano por lo que toda sección meridiana es una hipérbola. De ello se desprende que la superficie se puede generar por rotación de una hipérbola en torno a su eje.
El hiperboloide es una superficie de segundo orden y por cada uno de sus puntos pasan dos líneas de cada sistema que definen el plano tangente en uno de sus puntos. Éste plano secciona a la superficie en dos rectas.
La superficie no se puede desarrollar por ser alabeada.

Para calcular la intersección de una superficie alabeada como un plano se unen los puntos de intersección de las generatrices con el plano secante.
La intersección de cualquier superficie alabeada con otra se obtiene calculando las intersecciones de las generatrices de las dos.

Las superficies regladas alabeadas encuentran una aplicación muy extendida en la construcción de cubiertas, tejados, ajustes de tuberías, engranajes, torres de refrigeración de centrales nucleares, engranajes hiperbólicos para ajustar ruedas cuyos ejes se cruzan.